We will be using the either the TI-84 (84 plus) or the TI-Nspire in class next year. While I will be teaching exclusively from the TI-84, the TI-Nspire is a great device in that it is much more than a traditional graphing calculator. - It has more statistical features than the TI-84+ - Approved for use on the SAT and AP exams. Check out the TI website for more information: http://www.ti-nspire.com/tools/nspire/index.html The TI-84 (84 plus) is a fine tool that will meet all requirements for this course. The TI-Nspire is simply more versatile and has a few extra bells and whistles. If you already have a TI-84+, it is your choice as to upgrading. A TI-83 or TI-89 graphing calculator is generally **not** recommended. It is part of your Summer Homework assignment to obtain one of these calculators prior to the start of class. This assignment is due Friday, August 13th, 2019. It will be your first quiz/exam grade—worth 100 points— for the class. Don't forget to put your name on your paper! (1 point) - 1. Collect three newspaper, magazine or Internet journal articles that include statistical concepts. These may include things like graphs, charts or averages. They may also report conclusions made as a result of looking at data. For each of the articles, highlight the statistics mentioned and answer the following questions on another sheet of paper (10 points each): - a. What was the purpose of the article? Why was it written? - b. Were any conclusions stated? If so, what were they? - c. Is the article convincing? Do you believe the stated results? Explain. BE SURE TO INCLUDE A COPY OF EACH ARTICLE <u>APPROPRIATELY MOUNTED</u> (cut out and then taped or glued to a piece of paper), WITH ITS SOURCE. 2. **Algebra I & II practice**. Copy the given information and answer each question on your own paper. On **graph paper**, sketch the graph and state the slope and y-intercept of each line (1 point each): a. $$y = \frac{2}{3}(2x - 4)$$ b. $$3x+2y=14$$ c. $$\frac{1}{3}y - 6x = 4$$ Solve for the variable (show your work): d. $$4(x-2) = 3^2 - x$$ e. $$\frac{1}{3}n + 3 = n - 2$$ f. $$9(2p+1)-3p > 4p-6$$ g. $$\frac{2}{3}y = \frac{8}{27}$$ h. $$(q-12)3 \le 5q+2$$ i. $$\frac{m}{12} + \frac{5}{6} = \frac{5}{24}$$ j. $$-3x^2 + 343 = 0$$ k. $$x^2 - 8x + 7 = 0$$ 1. $$2\sqrt{x} + 9 = 21$$ $$m. \ \sqrt{2x+10} = x+1$$ n. $$\ln x = 1.6873$$ o. $$\log_3 81 = x$$ p. $$\log_3 x = 5$$ q. $$\log_{x} 256 = 8$$ r. $$\log 42.117 = .4x - 3.08$$ s. $$\log_5(x-4) = 0$$ Write the equation of the line containing the given points (show your work): t. $$(6, -2)$$ and $(0, 5)$ u. perpendicular to: $$y=2x-1$$, contains (2, 7) Takahashi, Shin—The Manga Guide to Statistics, No Starch Press, 2008 Tal, J.—Reading Between the Numbers, Statistical Thinking in Everyday Life, McGraw-Hill, 2000 Taleb, N.—Fooled by Randomness: The Hidden Role of Chance in Life and in the Markets, Thomson, 2004 Taleb, N.—The Black Swan: The Impact of the Highly Improbable, Thomson, 2007 Tufte, Edward R.—Envisioning Information, Graphics Press, 1990 Tufte, Edward R.—The Visual Display of Quantitative Information, Graphics Press, 2001