Pro-Galguis Mathematics 408 Standards Test Practice Exam TRIGONOMETRY I

- 1. The minimum and the maximum of a trigonometric function are shown in the diagram.
- a) Write a cosine equation for the function

b) Determine the value of the y – intercept, correct to three decimal places

2. Convert $\frac{11\pi}{18}$ to degrees

3. Find the exact value of $\sin \theta$ if $\cos \theta = \frac{1}{\sqrt{7}}$, and the terminal arm is in Quadrant I.

4. What is the period in the function $f(x) = 3\sin(5x) - 2$

5. Given the point (-3, -4), determine the exact values of $\cos \theta$ and $\sin \theta$

6. The length of arc swept out by an angle θ is 50 cm. If the radius of the circle is 18 cm, determine the measure of θ in radians.

7. Determine a value for x that would make the function $f(x) = 3 \csc x$ undefined in the domain $[0, 2\pi)$

8. Determine the value of f(10) in the function $f(x) = 4\sin[\pi(x-2)] + 3$

9. The graph of $y = 6\cos\left(x + \frac{3\pi}{4}\right) + 1$ is illustrated below.

Determine the exact values of g, h, m & n.

10. If the measure of the central angle is $\frac{\pi}{4}$, determine the measures of the other two angles within the triangle.

11. Determine the number of radians between the hour hand and the minute hand at 7:00.

12. Determine the value of $\cos\left(-\frac{7\pi}{4}\right)$

13. The circle $x^2 + y^2 = 1$ is drawn below, along with the line $y = \frac{\sqrt{3}}{2}$. Determine the coordinates of the two intersection points.

14. The graph of $f(x) = 6\sin x + d$ touches the x-axis once (but does not pass through) on the interval $0 \le x \le 2\pi$. A possible value for d is:

15. a) Graph $y = \cos x$

b) Graph $y = \cos^{-1} x$

- c) State the domain of $f^{-1}(x)$
- **16.** The maximum point on a trigonometric graph is at the point (-4, 6), and the minimum point is at (2, -2). If the graph is of the form $y = a \cos[b(x+c)] + d$, then determine possible values for each of the parameters.

- 17. An angle of 15° is equivalent to _____ radians. (exact value)
- **18.** The exact value of $\cos^{-1} \left(\cos \frac{5\pi}{6} \right)$ is
- 19. Write the general equation of a vertical asymptote in the graph of $y = \csc x$

20. If $\csc \theta = 2$ and $\tan \theta < 0$, determine the value of $\cos \theta$

- **21.** Given the function $f(x) = 2\sin\left[\frac{\pi}{2}(x-2)\right]$
- a) Sketch the graph

b) Sketch y = |f(x)|

22. If the coordinates of a point $P(\theta)$ on the unit circle is (a, b), then the coordinates of the point $P[\theta+180^{\circ}]$ are

- **23.** State the period of the graph of $y = \csc \theta$
- **24.** Convert $\frac{3\pi}{5}$ to degrees. Express answer to one decimal place.
- **25.** Given the function $f(x) = \tan x$
- a) Sketch y = f(x) on the domain $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

- **b)** State the domain of f(x)
- c) Sketch the graph of $f^{-1}(x)$

- **26.** A floating ball in a lake goes up and down with the tide.
- At 1 second, the ball has a minimum height of 5 cm below surface level.
- At 3 seconds, the ball has a maximum height of 5 cm above surface level.
- a) Sketch a graph for the first 4 seconds of motion

b) Write an equation for the function

- 27. If the product of $\cos x$ and $\sin x$ is negative, then which quadrant is the angle in?
- **28.** The value of $\sin^{-1}\left(\frac{1}{2}\right)$ is

29. The exact value of $\sin\left(\cos\frac{\pi}{2}\right)$ is

10

30. If the coordinates of a point $P(\theta)$ on the unit circle are $\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$, then the coordinates of the point $P[\theta+180^{\circ}]$ are

31. A tire rolls 3π metres while turning 240°. Determine the area of the wheel.

MULTIPLE CHOICE SECTION

- **1.** Given $\csc \theta = \frac{5}{4}$, the exact value of $\tan \theta$ is
- a) $\frac{5}{4}$
- b) $\frac{3}{5}$
- c) $\pm \frac{3}{4}$
- d) $\pm \frac{4}{3}$
- **2.** A tire has a radius of $\frac{\pi}{5}$ m. The tire is rolled and travels a total distance of 28π m. By the time the tire stops, it has rolled through an angle of
- a) 28π
- b) 140°
- c) $\frac{28}{5}$ rad
- d) 8021.41°
- 3. Given the trigonometric function $f(x) = \cos x$, the statement which is true is
- a) f(x) = -f(x)
- b) f(x) = f(-x)
- c) $f(x) = f^{-1}(x)$
- $d) \quad f(x) = -f(-x)$
- **4.** If $90^{\circ} < \theta < 180^{\circ}$, a true statement is
- a) $0^{\circ} < \theta < 90^{\circ}$
- b) $\cos \theta \le \tan \theta$
- c) $0 < \sin \theta < 1$
- d) $0 < \cos \theta < 1$

12

5. Given the function $f(x) = 12\cos(2x)$, and the transformation $g(x) = \frac{1}{4}f(x)$,

then the amplitude of g(x) is

- a) 2
- b) 3
- c) 4
- d) 12
- **6.** The function $f(x) = 2 \sec x$ has a range of
- a) (-2,2)
- b) $(-\infty, -2] \cup [2, \infty)$
- c) $\left[-\frac{1}{2},\frac{1}{2}\right]$
- d) $\left(-\infty,\infty\right)$
- 7. A wheel turns through an angle of 16 radians. This angle measurement in degrees is
- a) $\frac{\pi^0}{8}$
- b) $\frac{18^0}{\pi}$
- c) $8\pi^{0}$
- d) $\frac{2800^{\circ}}{\pi}$
- **8.** A sine function has a range of [-6, 2] and a period of 4. A trigonometric equation with these properties is
- a) $y = 8\sin\left(\frac{\pi}{2}\theta\right) + 2$
- b) $y = 4\sin(4\theta) 2$
- c) $y = 4\sin\left(\frac{\pi}{2}\theta\right) 2$
- d) $y = 4\sin\left(\frac{2}{\pi}\theta\right) 2$

9. The angle $\frac{24\pi}{3}$ is co-terminal to an angle of

- a) 0°
- b) $\frac{2\pi}{3}$
- c) $\frac{5\pi}{6}$
- d) $\frac{7\pi}{3}$

10. The exact value of $\csc\left(\frac{7\pi}{4}\right)$ is

- a) $-\sqrt{2}$
- b) $-\frac{\sqrt{2}}{2}$
- c) $\frac{\sqrt{2}}{2}$
- d) $\sqrt{2}$

11. Given that $\cos \theta = \frac{4}{5}$ and $\sin \theta = -\frac{3}{5}$, then the terminal arm is located in quadrant

- a) I
- b) II
- c) III
- d) IV

12. The period of the function g(x) is 8. If g(0) = 12, g(4) = 6, and g(8) = 12, then the value of g(12) is

- a) 0
- b) 6
- c) 12
- d) 18

- 13. An angle of $\frac{3\pi}{2}$ on the unit circle has coordinates of
- a) $\frac{1}{2}, \frac{\sqrt{3}}{2}$
- b) $-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}$
- c) (0, -1)
- d) (-1, 0)
- **14.** If $\sec \theta > 0$ and $\sin \theta < 0$, then θ terminates in quadrant
- a) I
- b) II
- c) III
- d) IV
- **15.** The period and phase shift for the trigonometric equation $y = \frac{1}{2} \sin 4 \left(\theta \frac{\pi}{3} \right)$ are
- a) period = 4; phase shift = $\frac{\pi}{3}$ left
- b) period = 4; phase shift = $\frac{\pi}{3}$ right
- c) period = $\frac{\pi}{2}$; phase shift = $\frac{\pi}{3}$ left
- d) period = $\frac{\pi}{2}$; phase shift = $\frac{\pi}{3}$ right
- **16.** The equation of an asymptote on the graph of $y = \csc x$ is
- a) $x = \frac{\pi}{4}$
- b) $x = \frac{\pi}{2}$
- c) $x = \pi$
- d) $x = \frac{3\pi}{2}$

15

17. If $\tan x \sin x < 0$, then x terminates in quadrants

- a) II or III
- b) II or IV
- c) I or IV
- d) III or IV

18. The value of $\sin^{-1}\left(\frac{\sqrt{2}}{2}\right)$ is:

- a) $\frac{\pi}{4}$
- b) $\frac{5\pi}{4}$
- c) $\frac{4\pi}{3}$
- d) $\frac{11\pi}{6}$